Introduction to Bayesian methods and Bayesian Neural Networks

Tomasz Kuśmierczyk

2024-06-14

This research is part of the project No. 2022/45/P/ST6/02969 co-funded by the National Science Centre and the European Union Framework Programme for Research and Innovation Horizon 2020 under the Marie Skłodowska-Curie grant agreement No. 945339. For the purpose of Open Access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission;

イロト イ押 トイヨ トイヨ トー

1 / 43

 Ω

E

Task: for a biased (=unfair) coin, find the probability of heads θ :

Task: for a biased (=unfair) coin, find the probability of heads θ : 1. Observations $\mathcal{D} = \{H, H, H, T, H, H, T, H, H, H, H, T\}$

Task: for a biased (=unfair) coin, find the probability of heads θ :

2. Observations $\mathcal{D} = \{H, H, H, T, H, H, T, H\}$

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \cdots \oplus \mathbf{1}$

Task: for a biased (=unfair) coin, find the probability of heads θ :

3. Observations $\mathcal{D} = \{H, H, H, T\}$

Task: for a biased (=unfair) coin, find the probability of heads θ :

4. Observations $\mathcal{D} = \{T, T\}$

 $A \equiv 1 + A \equiv 1 + A \equiv 1 + A \equiv 1 + \cdots \equiv 1$

Maximum Likelihood Estimate

- 1. Specify model.
- 2. Select loss.
- 3. Find parameters minimizing loss $(=\text{maximizing data})$ likelihood).

Maximum Likelihood Estimate

- 1. Specify model.
- 2. Select loss.
- 3. Find parameters minimizing loss $(=\text{maximizing data})$ likelihood).

Coin tossing example:

- **Parameter:** θ
- ▶ Option 1: MSE loss: $\mathbb{L}(D, \theta) = \sum_{y \in \mathcal{D}} (y \theta)^2$
- ▶ Option 2: Bernoulli negative log-likelihood: $\mathbb{L}(D,\theta)=-\sum_{\mathsf{y}\in D} \log p(\mathsf{y}|\theta)$ where $p=$ Bernoulli pmf

► Solution:
$$
\hat{\theta} = \operatorname{argmin}_{\theta} \mathbb{L}(D, \theta)
$$

\n $\implies \hat{\theta} = 0.75 \text{ for } 1, 2, 3.$
\n $\implies \hat{\theta} = 0.0 \text{ for } 4.$

Few problems with MLE

- ▶ Overfitting with Small Sample Size: If we toss the coin a very small number of times (e.g., once or twice), MLE can give misleading results.
- ▶ Bias in Estimation with Limited Data: MLE is highly sensitive to the sample size. With few observations, the estimation can be heavily biased.
- ▶ Zero Probability Issue: If an outcome is not observed in the sample, MLE assigns it a probability of zero.
- ▶ Doesn't Account for Prior Knowledge: MLE only uses the observed data and does not incorporate any prior knowledge or beliefs.
- ▶ Variance in Estimates: The variance of the MLE estimate is high for small sample sizes, leading to unstable predictions.
- ▶ Sensitivity to Outliers: Outliers or rare events can disproportionately affect the MLE.

MLE solution $p(y|x, D)$ for a NN trained on 1k data points

Based on: https://github.com/wiseodd/last_layer_laplace

MLE solution $p(y|x, D)$ for a NN trained on 4 data points

Based on: https://github.com/wiseodd/last_layer_laplace

We want ML models that:

- ▶ are uncertain about unseen things
- \blacktriangleright become more certain with more data

MLE vs Bayes: Latent variable inference

```
• point-wise - find one value \hat{\theta},
    e.g., by minimizing loss = maximizing likelihood (MLE) /
    maximum a posteriori (MAP): \theta =\overline{\phantom{a}}\hat{\theta} = \arg\min_{\theta} L(D, \theta)ightharpoonup distributional - find a posterior p(\theta|\mathcal{D})\blacktriangleright we get uncertainty about \theta
```
8 / 43

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \cdots \oplus \mathbf{1}$

(e.g., variance in addition to the mean)

Everything follows from two basic rules:

- Sum rule: $p(A) = \sum_b p(A, B = b)$
- ▶ Product rule: $p(A, B) = p(B|A) \cdot p(A) = p(A|B) \cdot p(B)$

Everything follows from two basic rules:

$$
\triangleright \text{ Sum rule: } p(A) = \sum_{b} p(A, B = b)
$$

▶ Product rule: $p(A, B) = p(B|A) \cdot p(A) = p(A|B) \cdot p(B)$ Bayes' Theorem:

$$
p(A|B) = \frac{p(B|A) \cdot p(A)}{p(B)} = \frac{p(B|A) \cdot p(A)}{\sum_a p(B, A = a)} = \frac{p(B|A) \cdot p(A)}{\sum_a p(B|A = a)p(A = a)}
$$

 \mathcal{A}

9 / 43

Basic Concepts of Bayesian Methods

$$
p(A|B) = \frac{p(B|A) \cdot p(A)}{p(B)}
$$

Let's rename $A \to \theta$, $B \to \mathcal{D}$:

$$
\rho(\theta|\mathcal{D}) = \frac{\rho(\mathcal{D}|\theta) \cdot \rho(\theta)}{\rho(\mathcal{D})}
$$

- **Prior** $p(\theta)$: Initial belief on parameters before seeing data
- **Eikelihood** $p(\mathcal{D}|\theta)$: Probability of data given parameters of the model
- **Posterior** $p(\theta|\mathcal{D})$: Updated belief after seeing (more) data

Bayes Theorem Example: Determining Stroke Type Based on MRI Scan Intensity

▶ The MRI scan of a patient shows an intensity value of $y = 140$ units $(D = \{140\})$.

Bayes Theorem Example: Determining Stroke Type Based on MRI Scan Intensity

- ▶ The MRI scan of a patient shows an intensity value of $y = 140$ units $(D = \{140\})$.
- ▶ Ischemic Stroke (Ischemic): In an ischemic stroke, affected brain areas may show lower signal intensity due to reduced blood flow. Assume these intensity values follow a normal distribution with a mean of 100 units and a standard deviation of $20¹$

 $y \sim \mathcal{N}(100, 20^2)|_{\theta=l}$.

▶ Hemorrhagic Stroke (Hemorrhagic): In a hemorrhagic stroke, affected areas show higher signal intensity due to bleeding. Assume these intensity values follow a normal distribution with a mean of 180 units and a standard deviation of: $y \sim \mathcal{N}(180, 30^2)|_{\theta = H}.$

Bayes Theorem Example: likelihood

 $p(y|\theta) = \mathcal{N}(y|100, 20^2) \cdot \mathbb{I}[\theta = I] + \mathcal{N}(y|180, 30^2) \cdot \mathbb{I}[\theta = H]$

Bayes Theorem Example: priors

Prior Beliefs about Parameters:

- ▶ Ischemic Stroke (Ischemic): This is the most common type of stroke, accounting for about 85% of all strokes (prior probability $= 0.85$: $p(\theta = 1) = 0.85$
- ▶ Hemorrhagic Stroke (Hemorrhagic): Less common, these strokes account for the remaining 15% of stroke cases (prior probability $= 0.15$).

 $p(\theta = H) = 0.15$

Bayes Theorem Example: solution

- \blacktriangleright Data: $\mathcal{D} = \{140\}$
- ▶ Likelihood: $\mathcal{N}(y|100, 20^2)|_{\theta=1}$, $\mathcal{N}(y|180, 30^2)|_{\theta=1}$
- ▶ Priors: $p(\theta = 1) = 0.85$, $p(\theta = H) = 0.15$

Bayes Theorem Example: solution

 \blacktriangleright Data: $\mathcal{D} = \{140\}$

- ▶ Likelihood: $\mathcal{N}(y|100, 20^2)|_{\theta=1}$, $\mathcal{N}(y|180, 30^2)|_{\theta=1}$
- ▶ Priors: $p(\theta = I) = 0.85$, $p(\theta = H) = 0.15$
- ▶ Computation:
	- \blacktriangleright $p(\mathcal{D}|\theta = I) = \mathcal{N}(140|100, 20^2) = 0.0027$
	- \blacktriangleright $p(\mathcal{D}|\theta = \hat{H}) = \mathcal{N}(140|180, 30^2) = 0.0055$

Bayes Theorem Example: solution

 \blacktriangleright Data: $\mathcal{D} = \{140\}$

- ▶ Likelihood: $\mathcal{N}(y|100, 20^2)|_{\theta=1}$, $\mathcal{N}(y|180, 30^2)|_{\theta=1}$
- ▶ Priors: $p(\theta = I) = 0.85$, $p(\theta = H) = 0.15$
- ▶ Computation:
	- \blacktriangleright $p(\mathcal{D}|\theta = I) = \mathcal{N}(140|100, 20^2) = 0.0027$
	- \blacktriangleright $p(\mathcal{D}|\theta = \hat{H}) = \mathcal{N}(140|180, 30^2) = 0.0055$
	- $p(D) = 0.0027 * 0.85 + 0.15 * 0.0055 =$ $0.002295 + 0.000825 = 0.00312$
	- \blacktriangleright $p(\theta = I|\mathcal{D}) = 0.0027 * 0.85/0.00312 = 0.736$
	- \blacktriangleright $p(\theta = H|\mathcal{D}) = 0.15 * 0.0055/0.00312 = 0.264$

14 / 43

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

Understanding priors: posteriors as priors

$$
\rho(\theta|\mathcal{D}_0)=\frac{\rho(\mathcal{D}_0|\theta)\cdot\rho(\theta)}{\rho(\mathcal{D}_0)}
$$

Understanding priors: posteriors as priors

$$
\rho(\theta|\mathcal{D}_0) = \frac{\rho(\mathcal{D}_0|\theta) \cdot \rho(\theta)}{\rho(\mathcal{D}_0)}
$$

$$
\rho(\theta|\mathcal{D}_1 \cup \mathcal{D}_0) = \frac{\rho(\mathcal{D}_1 \cup \mathcal{D}_0|\theta) \cdot \rho(\theta)}{\rho(\mathcal{D}_1 \cup \mathcal{D}_0)} =
$$

$$
= \frac{\rho(\mathcal{D}_1|\theta)\rho(\mathcal{D}_0|\theta)\rho(\theta)}{\rho(\mathcal{D}_1)\rho(\mathcal{D}_0)} = \frac{\rho(\mathcal{D}_1|\theta)\rho(\theta|\mathcal{D}_0)}{\rho(\mathcal{D}_1)}
$$

メロトメ 伊 メモトメモト ニヨーのダウ 15 / 43

Understanding priors: posteriors as priors

$$
\rho(\theta|\mathcal{D}_0) = \frac{\rho(\mathcal{D}_0|\theta) \cdot \rho(\theta)}{\rho(\mathcal{D}_0)}
$$

$$
\rho(\theta|\mathcal{D}_1 \cup \mathcal{D}_0) = \frac{\rho(\mathcal{D}_1 \cup \mathcal{D}_0|\theta) \cdot \rho(\theta)}{\rho(\mathcal{D}_1 \cup \mathcal{D}_0)} =
$$

$$
= \frac{\rho(\mathcal{D}_1|\theta)\rho(\mathcal{D}_0|\theta)\rho(\theta)}{\rho(\mathcal{D}_1)\rho(\mathcal{D}_0)} = \frac{\rho(\mathcal{D}_1|\theta)\rho(\theta|\mathcal{D}_0)}{\rho(\mathcal{D}_1)}
$$

15 / 43

Bayes Theorem Example: repeated measurement

Previous solution for $\mathcal{D}_0 = \{140\}$:

$$
p(\theta = I|\mathcal{D}) = 0.0027 * 0.85/0.00312 = 0.736
$$

 \blacktriangleright $p(\theta = H|\mathcal{D}) = 0.15 * 0.0055/0.00312 = 0.264$

After additional measurement $y = 160$: $\mathcal{D}_1 = \{160\}$; $\mathcal{D} = \mathcal{D}_0 \cup \mathcal{D}_1 = \{140, 160\}.$

$$
\blacktriangleright \ \rho(\mathcal{D}_1|\theta = I) = \mathcal{N}(160|100, 20^2) = 0.0002
$$

$$
\blacktriangleright \ \rho(\mathcal{D}_1|\theta = H) = \mathcal{N}(160|180, 30^2) = 0.0106
$$

$$
p(D) = 0.0002 * 0.736 + 0.0106 * 0.264 = 0.0029456
$$

$$
p(\theta = I|\mathcal{D}) = 0.0002 * 0.736/0.0029456 = 0.05
$$

$$
p(\theta = H|\mathcal{D}) = 0.0106 * 0.264/0.0029456 = 0.95
$$

Conjugate priors

- ▶ Problem: how to find $p(\theta|\mathcal{D})$?
- \blacktriangleright For some pairs of prior+likelihood, the posterior takes the same form as prior

Conjugate priors: whiteboard example

Back to the coin-tossing example:

Let's consider Beta-Bernoulli model:

$$
\text{ \textcolor{red}{\blacktriangleright} \text{ prior } p(\theta) = Beta(\theta | \alpha, \beta) = \frac{\theta^{\alpha-1} \cdot (1-\theta)^{\beta-1}}{B(\alpha,\beta)}
$$

▶ likelihood

$$
p(\mathcal{D}|\theta) = \prod_{y \in \mathcal{D}} \text{Bernoulli}(y|\theta) = \prod_{y} (\theta^{y} \cdot (1-\theta)^{(1-y)})
$$

$$
\blacktriangleright \text{ example data: } \mathcal{D} = \{T, T\}
$$

Conjugate priors: whiteboard example

Back to the coin-tossing example:

Let's consider Beta-Bernoulli model:

$$
\text{ \textcolor{red}{\blacktriangleright} \text{ prior } \rho(\theta) = Beta(\theta|\alpha, \beta) = \frac{\theta^{\alpha-1} \cdot (1-\theta)^{\beta-1}}{B(\alpha,\beta)}
$$

▶ likelihood

$$
p(\mathcal{D}|\theta) = \prod_{y \in \mathcal{D}} \text{Bernoulli}(y|\theta) = \prod_{y} (\theta^{y} \cdot (1-\theta)^{(1-y)})
$$

$$
\blacktriangleright \text{ example data: } \mathcal{D} = \{T, T\}
$$

Find $p(\theta|\mathcal{D})$:

1. Let's start with $p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$

 $2. \ldots$

- 3. [https://homepage.divms.uiowa.edu/~mbognar/](https://homepage.divms.uiowa.edu/~mbognar/applets/beta.html) [applets/beta.html](https://homepage.divms.uiowa.edu/~mbognar/applets/beta.html)
- 4. Importance of priors: $\alpha = \beta = 1$ vs $\alpha = \beta = 10$

Conjugate priors

Conjugate priors:

https://en.wikipedia.org/wiki/Conjugate_prior

Finding latent variable vs predictive distribution

Two tasks:

- **•** find latent variables θ (e.g. clusters in data) i.e. find $p(\theta|\mathcal{D})$
- \triangleright make predictions for a new y (often based on features x) i.e. find $p(y|D, x)$

NNs: Typical Regression/Classification Setting

- ▶ Data: $D = \{(x_i, y_i)\}$ but x_i (e.g., features vector) are not modeled (=are fixed)
- \blacktriangleright Task: predict unknown y for some input x
- ▶ Model:
	- **•** parameters vector: θ
	- ▶ likelihood i.i.d.: $p(\mathcal{D}|\theta) = \prod_i p(y_i|\theta, x_i)$

NNs: likelihood $p(\mathcal{D}|\theta) = \prod_i p(y_i|\theta, x_i)$

▶ NN structure (layers, activations etc.) may be hidden inside of likelihood or we can write explicitly: $p(y|\theta, x) = p(y|\text{NN}(\theta^{\text{NN}}, x), \theta^{\text{lik}})$ \blacktriangleright $\theta = \theta^{\textsf{NN}} \cup \theta^{\textsf{lik}}$

NNs: likelihood $p(\mathcal{D}|\theta) = \prod_i p(y_i|\theta, x_i)$

- ▶ NN structure (layers, activations etc.) may be hidden inside of likelihood or we can write explicitly:
	- $p(y|\theta, x) = p(y|\text{NN}(\theta^{\text{NN}}, x), \theta^{\text{lik}})$
		- \blacktriangleright $\theta = \theta^{\textsf{NN}} \cup \theta^{\textsf{lik}}$
		- ▶ where NN is the network
		- \triangleright p "interprets" logits as parameters of a probability distribution e.g. softmax, sigmoid, normal
		- \blacktriangleright θ ^{lik} are additional likelihood parameters not included in NN
- ▶ NN(θ , x) = $\phi^L(\theta^L, \phi^{L-1}(\theta^{L-1}, \dots, \phi^1(\theta^1, x)))$
	- ► where $\theta^{NN} = \theta^1 \cup \cdots \cup \theta^L$ consists of weights and biases in NN
	- \blacktriangleright ϕ^I are layers e.g. ϕ' (weights∪biases, inputs) = a $'$ (weights•inputs + biases)
	- \blacktriangleright a^l are activations

Point-wise (MLE/MAP) solution

• Parameters: find one value $\hat{\theta}$, e.g., by minimizing loss $=$ maximizing likelihood (MLE) / maximum a posteriori (MAP):

$$
\hat{\theta} = \mathsf{argmin}_\theta \mathbb{L}(\mathcal{D}, \theta)
$$

▶ Predictions:

$$
\underbrace{p(y|x,\mathcal{D})}_{\mathbf{w} \mathbf{w} \mathbf{w}} = \underbrace{p(y|\hat{\theta},x)}_{\mathbf{w} \mathbf{w}}
$$

predictive distribution

likelihood

23 / 43

KO KARK KEK KEK E YORO

Example: Homoscedastic Gaussian regression

\n- \n
$$
p(y_i|NN(\theta, x_i), \sigma) = \mathcal{N}(y_i|\mu_i, \sigma)
$$
\n
\n- \n $\mu_i := NN(x_i, \theta) = \phi^L(\theta^L, \phi^{L-1}(\theta^{L-1}, \ldots, \phi^1(\theta^1, x_i)))$ \n
\n- \n $\theta^{lik} = \{\sigma\}$ \n
\n- \n $a^L = \text{identity (i.e., } a^L(v) = v)$ \n
\n- \n Note: we look for $\mathbb{E}_{p(y_i|NN(\theta, x_i), \sigma)}[y_i] = \mu_i$, and it is coincide.\n
\n

lental that (for Gaussian regression) the NN is returning exactly $\mu_i.$

1D linear regression: $NN(x, \theta) = \theta \cdot x$ and $\sigma = 1$ (i.e. $y = \theta \cdot x + \epsilon, \epsilon \sim \mathcal{N}(0, 1)$)

▶ point-wise - find $\hat{\theta}$, e.g., maximizing likelihood (MLE) or maximum a posteriori (MAP)

25 / 43

イロト イ押 トイヨ トイヨ トー

Bayesian (distributional) solution

▶ Parameters: find a posterior $p(\theta|\mathcal{D})$

 \triangleright we get uncertainty about θ (e.g., variance in addition to mean)

▶ Predictions: Bayesian Model Averaging (average of all possible models weighted by the posterior):

 $p(y|x, \mathcal{D}) = \int p(y|\theta, x) p(\theta|\mathcal{D}) d\theta$

posterior predictive

likelihood posterior

Bayesian (distributional) solution

• Parameters: find a posterior $p(\theta|\mathcal{D})$

 \triangleright we get uncertainty about θ (e.g., variance in addition to mean)

▶ Predictions: Bayesian Model Averaging (average of all possible models weighted by the posterior):

$$
\underbrace{p(y|x,\mathcal{D})}_{\text{max}} = \int \underbrace{p(y|\theta,x)}_{\text{max}} \underbrace{p(\theta|\mathcal{D})}_{\text{max}} d\theta
$$

posterior predictive

likelihood posterior

ightharpoorterive ultimate goal: find posterior predictive $p(y|x, D)$ **▶** intermediate goal: find posterior $p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$ Bayesian solution: Making predictions with MC

▶ Bayesian Model Averaging (average of all possible models weighted by the posterior):

$$
\underbrace{p(y|x, D)}_{\text{posterior predictive}} = \int \underbrace{p(y|\theta, x)}_{\text{likelihood posterior}} \underbrace{p(\theta|D)}_{\text{posterior}}
$$

Statistics of $p(y|x, D)$ can be obtained using the Monte-Carlo estimates by two-step sampling:

▶ sample $\theta \sim p(\theta|\mathcal{D})$

► for the fixed θ , sample $y \sim p(y|\theta, x)$

For example, $\mathbb{E}_{p(y|x,\mathcal{D})}[y] \approx \frac{1}{S_d}$ $\varsigma_{\scriptscriptstyle{\theta}}$ 1 $\frac{1}{\mathsf{S}_\mathsf{y}}\sum_{\theta \sim \mathsf{p}(\theta|\mathcal{D})}\sum_{\mathsf{y} \sim \mathsf{p}(\mathsf{y}|\theta,\mathsf{x})} \mathsf{y}$ 1D linear regression: $NN(x, \theta) = \theta \cdot x$ and $\sigma = 1$ (i.e. $y = \theta \cdot x + \epsilon, \epsilon \sim \mathcal{N}(0, 1)$)

- **•** point-wise find $\hat{\theta}$. e.g., maximizing likelihood (MLE) or maximum a posteriori (MAP)
- \blacktriangleright distributional find a posterior $p(\theta|D)$

イロト イ押ト イヨト イヨト

1D non-linear regression example

http://mlg.eng.cam.ac.uk/yarin/blog_2248.html#demo

Figure: Multiple draws of a regression model.

Example: Classification

\n- \n
$$
p(y_i|NN(\theta, x_i)) = \text{Bernoulli}(y_i|p_i)
$$
\n
$$
p_i := NN(x_i, \theta) = \phi^L(\theta^L, \phi^{L-1}(\theta^{L-1}, \dots, \phi^1(\theta^1, x_i)))
$$
\n
$$
\theta^{lik} = \emptyset
$$
\n
$$
a^L(v) = \text{sigmoid}(v)
$$
\n
\n

sigmoid makes sure $p_i \in [0, 1]$

MLE (likelihood=Bernoulli) for a NN Classifier

```
class Model(nn.Module):
   def init (self):
        super(Model, self), init ()
       self.lavers = nn.Sequential(nn.Linear(n, h).
            nn.BatchNorm1d(h).
            nn. ReLU().
            nn.Linear(h, h),
            nn.BatchNormal(d(h)).
            nn.ReLU(),
           nn.Linear(h, 1),def forward(self, x):
        x = self<math>, layers(x)return self.torch.sigmoid(x)
model = Model()opt = optim.SGD(model.parameters(), lr=1e-3, momentum=0.9, weight_decay=5e-4)
for it in range(5000):
   y_pred = model(X_ttrain).squeeze()
   i = F.binary_cross_entropy(y_pred, y_train)l.backward()
   opt.step()
   opt.zero grad()
```
KO KARK KEK KEK EL YAN 31 / 43

MLE solution $p(y|x, \mathcal{D})$ for 4 data points

Based on: https://github.com/wiseodd/last_layer_laplace accompanying: Kristiadi et al. "Being bayesian, even just a bit, fixes overconfidence in relu networks." ICML 2020.

Classification: MLE vs Bayesian (LLLA) solution

Based on: https://github.com/wiseodd/last_layer_laplace

Classification: Bayesian (LLLA) solution for varying data sizes

Based on: https://github.com/wiseodd/last_layer_laplace

Challenges in Bayesian learning

Design:

- \blacktriangleright likelihood and network structure
- riors $p(\theta)$

Learning:

- **•** posterior $p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}, \theta)}{p(\mathcal{D})}$ $p(\mathcal{D})$
- versidence $p(D) = \int p(D|\theta)p(\theta)d\theta$
- **•** posterior predictive $p(y|\mathcal{D}) = \int p(y|\theta)p(\theta|\mathcal{D})d\theta$
- \triangleright model selection $=$ hyperparameters

Priors

$$
\blacktriangleright \theta = \theta^L \cup \ldots \theta^1
$$

► Factorized priors
$$
p(\theta) = \prod_d p(\theta_d)
$$
 Note: lower vs upper indices

• often
$$
p(\theta_d) = N(\theta_d|0, 1)
$$

(Basic Feed-Forward) Bayesian Neural Network

prior distribution

Objective: find the posterior distribution $p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta) \cdot p(\theta)}{p(\mathcal{D})}$ $p(\mathcal{D})$

> イロト イ押 トイヨ トイヨ トー つひひ 37 / 43

Finding posterior: Variational Inference

Finding posterior: Variational Inference

38 / 43

イロト イ押 トイヨ トイヨ トー

▶ Minimize KL between the approximation and the true posterior: **VI:** $q(\theta|\lambda) = \argmin_{\alpha} KL(q|p)$

Approximate inference: variational objective - ELBO

$$
KL(q|p) = \int q(\theta|\lambda) \log \left(\frac{q(\theta|\lambda)}{p(\theta|D)}\right) d\theta = \int q(\theta|\lambda) \log \left(\frac{q(\theta|\lambda)p(D)}{p(\theta|D)p(D)}\right) d\theta
$$

=
$$
\int q(\theta|\lambda) \log \left(\frac{q(\theta|\lambda)}{p(\theta,D)}\right) d\theta + \log p(D)
$$

=
$$
-\underbrace{\int q(\theta|\lambda) \left[\log (p(D|\theta)p(\theta)) - \log q(\theta|\lambda)\right] d\theta}_{E L B O} + \log p(D)
$$

=
$$
-\underbrace{\left(\mathbb{E}_{q} \log (p(D|\theta)p(\theta)) - \mathbb{E}_{q} \log q(\theta|\lambda)\right)}_{E L B O} + \log p(D)
$$

Since
$$
\log p(D) = \text{const: } \operatorname{argmin}_{q} KL(q|p) = \operatorname{argmax}_{q} EL B O
$$

Summary: variational inference for practitioners

We look for $q(\theta|\lambda) \approx p(\theta|\mathcal{D})$:

- 1. Choose model: likelihood $p(\mathcal{D}|\theta)$ and prior $p(\theta)$
- 2. Assume $q(\theta|\lambda)$ in some family parametrized by λ ; often: $q(\theta|\lambda) \equiv N(\mu, diag(\sigma))$ so $\lambda \equiv {\{\mu\}} \cup {\{\sigma\}}$
- 3. Optimize with gradients: $\lambda_{next} := \lambda + \eta \nabla_{\lambda} \mathcal{L}$; usually $\mathcal{L} \equiv ELBO$
- 4. Use $q(\theta|\lambda)$ in place of $p(\theta|\mathcal{D})$ wherever needed

Appendix

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君│ めぬひ 41 / 43

Disclaimer on notation

Continuous r.v.-s \longleftrightarrow Discrete r.v.-s:

$$
\blacktriangleright \text{ integral } \smallint \longleftrightarrow \text{sum } \sum
$$

▶ probability density $p \leftrightarrow$ probability mass P

We may abuse notation by writing e.g. r.v. $\sim p(r.v.)$ params) (instead of r.v. $\sim p(\text{params})$) to explicitly inform about r.v.

Loss:
$$
\mathbb{L}(\mathcal{D}, \theta) = \text{negative log-likelihood: } -\mathcal{L}(\mathcal{D}, \theta)
$$

Distributions: $q \equiv q(\theta|\lambda)$, $p \equiv p(\theta|\mathcal{D})$ e.g. $\mathcal{K} \mathcal{L}(q|p) \equiv \mathcal{K} \mathcal{L}(q(\theta|\lambda)|p(\theta|\mathcal{D})) = \int q(\theta|\lambda) \log \frac{q(\theta|\lambda)}{p(\theta|\mathcal{D})} d\theta$, $H(q) \equiv H(q(\theta|\lambda)) = -\int q(\theta|\lambda) \log q(\theta|\lambda) d\theta$

Some useful identities

► log
$$
e^A = A
$$

\n► log $(A \cdot B) = log(A) + log(B)$
\n► log $(\prod_i A_i) = \sum_i log(A_i)$
\n► log $(A/B) = log(A) - log(B)$
\n► $\int g(B)p(A)dA = g(B)$